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AESTRAC( e" V~ Bata rix D for real processes are:

We consider the Wiener filtering problem, when i. Ds(v, Dn(w) real, even, non-negative functions
the cross spectral density matrix of the signal and 2
noise is not exactly known. We obtain filters it. ID(w) x D(W)D(W) -- (1)
which are saddle point solutions for the criterion
of performance (mean square error. MSE) over the So D is non-negative definite, and diagonal elements
classes of allowable density matrices. Solutions are even functions of w.
for various classes are given. Given random processes 9(t) and n(t) with den-

sity matrix D and a filter h(t) with Fourier trans-
1. INTRODUCTION form H(w), the MSE for signal estimation using this

filter is
In classical Wiener filtering, we need to as-

me exact knowledge of the spectral density ma- '2
trix of signal and noise. In many applications e(D,H) - E (0- h(v)x(t-v)dvl
this assumption of exact knowledge is unreasonable. LI
A more realistic assumption is that our matrix be- -
longs to a class of density matrices. This class = Rs (O)-2 f h(v)Rex (v)dv + ffh(v)h(u)R.(v-u)dvdu,
can be defined according to our knowledge of the -
true density matrix. For this problem we will de- (2)
rive a filter that performs in an optimum way over
the.whole class. where x(t)fs(t)+n(t) and R ij(T) is the cross corre-

Nahi and Weiss [1,2] derived the bounding fil- lation between i and J. Using Fourier transform and
ter. This filter is a Wiener filter for some den- Parseval's theorem, (2) can be written as:
sity matrix Db and if it is applied to any matrix

from the class the XSE error is bounded by the mn-" 2
imum MSE for Db. Because Db does not usually be- e(D,H)-L f( [Ds(w)-2(w)D x(w)+IH(w)lDx(w)1dw (3)

long to the class, there is no matrix in the class
that can reach the bound of the MSE. This means
that there is a possibility for better performance. The optimum filter for D is given by

Kassam and Lim (31 derived the robust Wiener D-(w)
filter, when signal and noise are uncorrelated D ax (4)
(density matrix diagonal). This filter sets a o Dx(w)
bound on the MSE and the bound can be reached by
some matrix from the class. In (41 and (5], Poor If we substitute (4) into (3) we have that the op-
generalized some of this work. The present paper if we s ie n
extends the above idea to the correlated signal and tiiumMSE is given by:
noise case.

Presence of correlation is possible in many 1 (D,(w)D (w)-fD (w) 2

applications. An example is a multipath channel e (D) . D ) w  (5
with a strong signal component, weak unwanted mul- 2tJ x(W)
tipath signals and regular noise. The total
"noise" is correlated with the signal.

11. ROBUST WIENER FILTERS 2.1 Definition of Robust Filter

Let us assume that our processes are real,
wide sense stationary and zero mean and the noise Assume that a class of density matrices is

process is additive. We also assume that there ex- given. A robust filter H is defined by the fol-

lots a spectral density matrix D for the signal, lowing properties:

noise processes, given by: a. 9r is an optimum filter for some matrix Drc

rr

D(w) D (w) so that e(Dr,H r) t e(Dr ,H) for any filter R.

Ln (w ) D3 (w) b. For any DeAwe have: e(D,H, ) . e,(Dr)_-e(D rH).

Combining a and b we have the saddle point relation
where a is for signal, n for noise and (*) for com-
plex conjugate. The properties that characterize e(DRr) a op (Dr) I e(D r,N) (6)

*This research Is supported by the Air Force Office of Scientific Research, Air Force Systems Comand,
U ', under Grant AFOSR 77-3154.
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I : I
for any DEA and any filter H. L(w) if A(w) I L(w)

h 0D n) - A(W) if L(w) i A(v) i U(w)
2.2 Theorem 0. CV() if U(v) I AMw)

Let A be a convex class of density matrices, where Aw) defined in (9).
Then the pair (Dr,H ) is a saddle point solution From section 2.2 we have that Dr (w)--ID:n()I.

r an a
for MSE over class A and the class of all linear Figure 1 illustrates this case.
filters (it satisfies (6)), if and only if:

2. Upper and lower bounds on D (w) and D (w).

OPDr) e(D) We assume that bounds Li(w) ,Ui(w) for Di v) are
given:

The proof is given in appendix A.
-Theorem 0 is the key point in our search for 0 1 Li(w) S Di(w)£Ui(w) i.sn.

the robust filter, because based on it we have on-
ly to maximize eop(D). In addition we will assume knowledge of the total

2.3 Maximization of e op(D) power of signal and noise,

From (5) if we write the error in terms of a 2
and n we get: 1 I (w)dw -

2
1va i-s,n

s (D) D (w)D n(w)-ID sn(W)l
2 dv where oI are known.

OP 2w JDa(w)+Dn(w)+2Re[Dsn(w)] (7) A. If there are no bounds on ID Cv)j, it can

reach the value min(D (v),Dn (W)). Under this con-

For every w and for given Ds (w),D (w),IDsn(W)I, the dition the error is:

worst ReEDsn(W)] is -IDan(w) , because it minimi-

zes the denominator. This gives: sp(D) " Jmin{Ds(w).Dn(w)ldw (lO)

op(D) - dw (8) Because of the power constraints, there are several
e 2Dw=. a ()+D n ()-21D (w) I 8) Jsub-cases. First we will give some definitions.

- A (v) - min(U (w), max[L av), L I(W)]

For given D (W),D n(w) expression (8) as a function A Cv) - min(U(w), ua[L (v), L Cv)])

of IDan(w)l is:

a. increasing for: Da(w) - Min{Ua(w), max[Ls(w), Un(w)]1

0 r ID e(w)I r min(D (W),D n(W)) 1(w) - min(Un(w), max[Ln(w), Us(w)])

b. decreasing for:
Figure 2 illustrates the definition of A,(w),Bs(W).

Sim{D Cw),D (w)) :L ID Cwl 1 O(D (w),D (w) a-
a n an a n 2 A) 2 then:

From condition a and b we can say that, given 
1Aaiwdv , 2w, , w >

1T n

D,(w), D(w), the worst ID an(w)j is the one that rL(V) if As() L ()

is as close as possible to min{Da(v),Da(w)). The D (w) 8 ) a

worst D an v) is Dan (w) - -IDen(w)l. ltaCw) otherwise

1L(w) if An(w) - Ln(w)

III.~ (wL)ATON DthCr)is
I.. Dg n(W) given with upper and lower bounds n

M "I---42. r 2+02 ioon (Dr)-a 2 ~i (L )+LCw)-uinCLoCw),LzCv)))dw
Let 0 i L(w) % ID n(v)! s U(v), with L(v),U(v) op a n 2 n 9 m (3

given. .If we define: Where Cv), in (W) are arbitrary functions with

.av) - minDs(w) ,DM )1 (9) . sv) I As(w) and in(w) S A(w)

the the worst-case characteristiclD r ) lis given but enough for D(w) and Dr(w) to fulfill the power
by constraints. m U

_________ =ju/



A2. ~ d 2wU f wdvw2a)Dw)I if U (w) -B (v)
oA ( w) + ., 2 ,O , 2 . (w ) d w < 2 , o D ( w>

a Is otherwise

rn )if Un(v) - B Cv)

Dr(W) is as in case Al D ) (W) otherwise

a Un(W) if U( w) An(v) DCrv L (w) otherwise

D8() n (w) otherwise Where I(w) > B(v) and I (w) I B n(w)

where I(w) arbitrary function with n(w) Z A(w). D) - w),U (w)dw

e (Dr) - - r L 
( w ) - uin(L (v),Un(w))1 

sop fw

OP a 2'i
In the cases above, interchanging the roles of s and
n in the conditions gives us similar results. The

A3. proof for cases Al and A3 can be found in AppendixI (v)dw 2w: > A(w)dw B.

a .a B. Suppose we are given a function R(w) such that

M;(.dw > 2.o 2 > fA,(w) dw 0 C JDan(w)j f. R(w) -5 mi(Ls(w)' Ln(w))

a Because of the maximization problem JDsn (w) has tobe

also assume 2,0 2 - JA() >21r2 (w- d as close as possible to min(D a(w), D n (v)), so

"" Irn(vI - ,R(.). To find the pair D 8v, Da (,)
A Av) if As(w) - Bs(W) notice that:

Dt (l) a(w) otherwise 2a( . ) (D) D (w)-, (,)-R (,)
A Awif A).(.) -B() so (D'5 n

D~(v - w) a p 2 O (w)+%(v)-2R(w) d

t (w) otherwise a

Where A (w) I is(w) 1 B5 (w) and D (w) i in 2J 2w w S(w)+N(v)

s % ( w,) .,
Where S(w)D s(w)-R(w)O and N(w)D n(w)-R(w)t_. To

r 2 maximize (11) it is enough to maximize the second
o (D) O - tL (v)- in(Un(w),La(w))}dw term. But this term is the expression for the min-

imum MSE for uncorrelated signal S(w) and noise
N(w), with

£4. J3.C~dw~ ~(w2) - R(w) I S (w) r. U (w) - R~v)
MA. %(w)dw > 2,o 2 alw)d., 2wo n nB )dw L(w) - I(w) N 1 (w) S Un(w) - R(w)

9 -- _ .- _ I-n

,r (w an I cas A3. and f(w)dw - 2ro~ 2 fR(w)dw- a

r Uw C)if U Cw) =An(w) J(w)dw - 2w,02 -fR(w)dw.ot) (M) otherwise ---

This problem has been solved in [3) and gives the

iMre I(w) > r:(w) solution to the present case.

* (1 t 2 1 3. Given classes for DsC ._Dn(3E

)oo 8I s~v)=inUm~w),L*C v )) }dw We assume again knowledge of the total power
of signal and noise. When there is no restriction

- on D anC) we have seen that the error is given by

AS, -IO ; 2 n(10) and it can be written In the following way:
f 2u ( .C)dw. NO. ~vd

S(eCD) a- g(x).D n(w)dw (12)



whet'.2 I'1I2  1D~2

a)J forO'< x < < !! o

Ifor x l x I

ad 2D 1 2 ID- 12
Dw I(l-c)D' + ED"1 (l-E)6 11;' + 51" Iax ax D; DD"

g(x) to a convex function of x for x a 0. So (12) *(-c)D' + ED")
can be used as a measure of distance between I X

Da (w an ov.Nwfrgvncasso sw But this is the Schwartz Inequality.
and Do Cw) we want the pair DrCv), r~ (w) that has

S % Proof of Theorem 0.the maximum distance. It turns out as we can see Teol fpr ses.Fo 6
from 14.6] and (71 that this pair does not depend Teol fpr ses. Po 6
on the form of g(x). As long as g(x) is any con-r
vex function the pair is always the same. Solu- e(D,H r) . e (Dr H r a op (Dr
tions to this problem are also given in these works r oi
for various classes. bt (DH1) I eo (D) s o(D r) xe OP D).

IV. NUMERICAL RESULTS
To prove the if part, define DC (le)Dr + ED,

We will assume the case when signal and noise 0 1 e 1 where Dea. Because of the lemma and the
are given as in Figure 3 and there is no restrict- fact that
ion on ID an v)l. The robust filter is simply:

{lwhen D Cvw) 1 Dn~w) o2(C .. G wd

oters so (De) is a convex function of C. So:
0 otherwip

It turns out that this filter has the same error e o (De) Z (l-c)e op(Dr) +c eopD) and
performance for any D an(w). If we use instead of O PO

H (v) the filter *I ep£r r)
D (w) 0~ L -e (D)I-e (D) (13)

Cv -D(W)+m(W)* so (D a)op (Dr)

assuming that signal and noise are uncorrelated, Ceas smntncwt epc

then the error is given by (3) and it becomes max- toCE and bounded as we can see flom (13) its limit

1amfor D v)--D(DC).exists as C"o But:

Den~~~w_ s-)nw 
1 ()-o r G~cCv)-G(O'v) dw (14)

In Table 1 are given some numbers for differ- 2iC
ent b. The error is er when we use H (w) and e -

r U Nov _L G(e,w) ij also monotonic with respect to c.
Is the worst error when we use H (w). In the third d

column we can see the percentageuof performance From' (13) and (14), we have
Improvement. Also shown is the optimum error eu of
%(w C) when Dean (W-0.u

APPENDIX A

before proving Theorem 0, we will prove the 111 li G(C.) - G(o ,w) dv
following lemma. 0C- w1

Lema 1. Let D', D"£A define De.(l-e)Dl+ ED" I t-~ ~ ) ~~)d
0 s It : 1 them the expression: 2,,f i+ E~~) ~~)d

Dgiw)-De(v)-jILx()12 -

04a,W) - a ~ v x IX I13dG~e,w)1  dw

is a convex function of C. But the last expression after we take the deriva-
Prof. t i suficentto rov tht:tive and make some manipulations, equals eCD,U

G(s,v) x C1-c)G(0,w) + tG~l,w).OPO

Subtracting each side from Dc(w) we have to prove
that
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so

a 2 + a 2 L w)- M

mIn{L a(w),L n (w)HIdw

And we have equality when D -Dr

Case A3. FIGURES AND TABLES

uin(D*,Dn) m in{L5,Dl + [min[D.,D n}

isinl, 8D smin{LD) +D 8- La

9 minL U)+Da - L 8and sw

ecPD) J[L a(w)-min{L,(w) 'Un(wflldw

with equality when D -Dr. 
Uw

Figure 1 vonst-case jor I for case 1, section III
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UU (v)

-(W D (v)

Figure 2 lilustration of functions defined Figure 3 Example spectra of section IV
In case 2A, section III

- for As(ii)

-- for B (W) TABLE 1

b e % e*
r u u

0.10 0.09 0.12 34.5 0.07

1.00 0.50 0.62 25.7 0.33

5.00 0.83 1.10 31.7 0.62

10.0 0.91 1.20 34.5 0.73

TABLE I Performance Comparision o1 Robust and
Nominally Optimum Filter for Example of
Figure 3. (No bound on IDrn(v) ).
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